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For the budding mathematician, the ability to comprehend and produce
rigorous proofs marks the transition from a novice student or consumer
of mathematics to a more expert practitioner. By the time a student begins
graduate school in mathematics, he or she is capable of both understand-
ing and creating formal proofs of known mathematical results and is ex-
pected to generate new proofs and theorems. Often the focus is on the
proofs themselves, the stable, shared outcomes of a process of proving.
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In this chapter, by contrast, the focus is on proof as an active practice
carried out by knowledgeable mathematicians, looking specifically at the
relationship among gesture, speech, thought, and technical definitions.
This case study is part of a larger ongoing research project on expert proof,
in which we focus on how advanced students of mathematics conceptualize
proof, how they collaborate to produce a proof, and how they coordinate
multiple modalities during their practice, modalities that include speech,
gesture, and inscriptions, both symbolic and graphic.! Our general thesis
is that these resources are deployed in a complex but coherent manner to
construe and scaffold the building of the desired intellectual product, the
mathematical proof.

The goals of this chapter are twofold. First, we argue for the importance
of gesture in mathematical practice, including proof, and review recent re-
search that places the body at the center of mathematical practice. Second,
we report on a case study of mathematical proving that treats proof as a
human activity, extended over time and performed in a social and mate-
rial context (Edwards, 2010; Marghetis & Nunez, 2013). Specifically, we
document the various kinds of gestures produced by mathematical experts
while they elaborate a proof and argue that these spontaneous gestures sug-
gest that experts’ reasoning about mathematical concepts is fundamentally
metaphorical and embodied. By examining the practice of proving from a
multimodal perspective, we hope to shed light on the nature of proofitself,
as a product but also as a human practice.

FROM PRODUCTS TO PRACTICE IN THE
STUDY OF MATHEMATICS

Traditionally, foundationalist accounts of mathematics (e.g., Benacerraf &
Putnam, 1983) have focused exclusively on the products of mathematical
activity—proofs and theorems—while ignoring the rich practices that con-
tribute to, and potentially constitute, the core of mathematics. This tenden-
cy to analyze static, abstract products rather than dynamic, human practices
is reminiscent of early formalist accounts of natural language, where, as
Kendon (2008) notes, “what is transferred to paper is abstracted away from
what is actually done within an enacted utterance” (p. 357).

Over the last few decades, researchers in mathematics education have
broadened their focus beyond proof as a product to investigate proving as a
cognitive process and a form of regimented discourse (e.g., Balacheff, 1991;
Boero, 2007; Hanna, 1991; Knuth, 2002), although this literature has gener-
ally focused on secondary school mathematics (typically geometry), rather
than on more advanced levels. Only recently, however, have these investiga-
tions attended to modalities beyond speech and inscriptions. But without
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a broader scope that includes the mathematician’s body, essential aspects
of communicative practice are invisible (Goldin-Meadow, 2003; Goodwin,
2000; Kendon, 2004, 2008; McNeill, 1992, 2000). Indeed, the particular
form of kinesis represented by hand and arm gestures has unique communi-
cative potential during situated proving. Manual gestures are often enacted
unconsciously and can convey information that might be consistent with,
complementary to, or different from the content of accompanying speech
(Kita, 2000; McNeill, 1992) or inscriptions (Marghetis & Nunez, 2013). In
fact, we would go further to propose that gesture and other bodily move-
ment is essential not only in communicating about mathematics but also in
the intellectual construction of mathematics. In short, the mathematician’s
body may be a constitutive part of his or her situated proving.

This claim requires empirical support, of course, and later in this chap-
ter we describe a recent study that supplies such evidence. But before turn-
ing to the case study, we briefly review some of the recent literature on
co-speech gesture and mathematics.

GESTURE: MEANINGFUL MOVEMENTS OF THE BODY

Gesture is universal, typically unmonitored by the speaker, and essential
to communication (Goldin-Meadow, 2003; Kendon, 2004; McNeill, 1992).
Most important, gesture offers a “window into the mind” (Goldin-Meadow,
2003, p. 1), in that gestures can provide clues to how a person is concep-
tualizing the situation being discussed. When co-produced with abstract
thinking, a speaker’s gestures may parallel the metaphorical reasoning
they exhibit in speech (Cienki, 1998; McNeill, 1992, 2000; Nuiez, 2006),
and give us insight into their representation of mathematical concepts and
solution strategies (e.g., Alibali, Bassok, Solomon, Syc, & Goldin-Meadow,
1999; Garber & Goldin-Meadow, 2002). These meaningful movements of
the hands and body, moreover, are meaningful not only for the speaker but
also for the listener: “perceiving hand movements during speech modu-
lates the distributed pattern of neural activation involved in both biologi-
cal motion perception and discourse comprehension, suggesting listeners
attempt to find meaning, not only in the words speakers produce, but also
in the hand movements that accompany speech” (Dick, Goldin-Meadow,
Hasson, Skipper, & Small, 2009, p. 3509). And the influence of gesture is
not limited to concrete, literal language: Evidence from electrophysiology
suggests that the cross-modal coordination of speech and gesture shapes
the neural response to metaphorical language (Cornejo et al., 2009). Be-
cause speech and gesture differ in their communicative possibilities, their
combination may “package” complementary forms of information within
the same discourse: linear, symbolic verbal language, on the one hand, and
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global, instantaneous imagery, on the other (Goldin-Meadow, 2003; Kita,
2000; McNeill, 2000).

Various means of categorizing or characterizing gestures have been de-
veloped. In this study, an initial distinction is made between gestures whose
purpose is to facilitate the interaction between the speaker and interlocutor
and gestures that refer to the content of the conversation. Bavelas and her
colleagues have called these two types of gestures “interactive” and “topi-
cal,” respectively (Bavelas, Chovil, Lawrie, & Wade, 1992). The analysis elab-
orated here focuses on these “topical” (also called “representational”) ges-
tures, especially the way they can embody abstract mathematical concepts
during proving. McNeill (2000) has further characterized gestures along
four dimensions: iconicity (resemblance to concrete referents), metapho-
ricity (reference to abstract entities), deixis (pointing or context-depen-
dence), and “temporal highlighting” or beats (giving emphasis through
repetition, i.e., producing “beats” in time with speech). Kendon (2004)
makes even further distinctions, discussing three varieties of gestural rep-
resentation that are distinguished by the relationship of the gesture to its
referent: enactment, depiction, and modeling. In enactment, the motor ac-
tion is meant to reproduce some features of the activity being represented.
For example, gesturing in the air as if you were drawing a graph would be
an enactment of the physical act of creating a graph. In depiction, the ges-
ture “creates an object in the air” (p. 160), typified by using the index fin-
ger to trace an object’s shape. In the example of graphing, while enactment
would represent the action, a finger tracing a graph in the air would be a
representation of the finished product (in this case, the act of drawing and
the actual graph that is produced may be manifested in similar gestures).
In modeling, the gesturing body part stands in for another object, as when
a fist represents a stone, or a speaker indicates a tangent line by holding
his or her palm at an angle. As we shall see, these distinctions will be useful
for describing and interpreting the gestures generated by doctoral students
while they work together to find a proof.

MATHEMATICS AND GESTURE

Gesture is prevalent in mathematical discourse as in other kinds of speech
(McNeill, 1992). Previous research on gesture and mathematics has looked
at various mathematical tasks, from simple (e.g., learning to count; Ali-
bali & diRusso, 1999) to advanced (e.g., discussing differential equations;
Rasmussen, Stephan, & Allen, 2004). Gesture can offer insight into how
students think while solving problems and into the effectiveness of teach-
ers’ communication (Alibali et al., 1999; Edwards, 2009; Garber & Goldin-
Meadow, 2002; Goldin-Meadow, Cook, & Mitchell, 2009; Goldin-Meadow,
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Kim, & Singer, 1999; Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001;
Goldin-Meadow & Wagner, 2005). In a study of gestures used during alge-
bra problem solving (Alibali et al., 1999), for instance, researchers found a
relationship between the form of representational gestures and the seman-
tic content of the mathematics problem. If a problem was stated in a way
that involved step-by-step, discrete changes, the gestures that participants
used to describe that problem also tended to be “discrete” (e.g., a sequence
of taps or beats). Conversely, a problem phrased in terms of continuous
change elicited sweeping, arcing, or other “continuous” gestures. Gesture
type also tended to reflect the particular kind of solution attempted (one
type representing a view of the problem as continuous and the other as dis-
crete). However, when the participant’s speech and gesture did not match,
they tended to use the strategy associated with their gestures rather than
that associated with their speech. As the authors noted, “Our findings sug-
gest that mental representations often include visual or perceptual infor-
mation, which may at times be more readily expressed in gesture than in
speech. In these cases, spontaneous gestures can be a valuable tool for il-
luminating mental representations” (Alibali et al., 1999, p. 332).

While early investigations into mathematics as an embodied activity
generally focused on mathematical language (Fauconnier & Turner, 2002;
Lakoff & Nuiez, 2000; Nunez, 2006), typically taken from textbooks and
conventional language, more recently mathematical gesture has provided
converging evidence for the role of embodied, possibly unconscious, cog-
nitive processes like conceptual metaphor (Lakoff & Johnson, 1980) and
fictive motion (Talmy, 2000). Spontaneous gesture has provided evidence
that arithmetic, for instance, is conceptualized using metaphors of Object
Collection or Motion Along a Path (Lakoff & Nuiez, 2000; Nufiez & Mar-
ghetis, in press). Analyses of gestures for fractions, geometry, and graphing
have revealed that implicit, embodied conceptual mappings are manifested
in bodily action (e.g., Edwards, 2009; Font, Bolite, & Acevedo, 2010). Even
mathematicians’ gestures about highly technical mathematical concepts
reveal such embodied thought, at least when produced in a pedagogical
context (Nunez, 2006, 2008).

Conclusions drawn from classroom contexts and mathematically naive
undergraduates, however, may not extend to the non-pedagogical activi-
ties of expert mathematicians. Here we elaborate on a study that utilized
video and audio data recorded during sessions in which doctoral students
in mathematics worked together to create a mathematical proof for a con-
jecture that was new to them. In Marghetis and Nunez (2013), we applied
the tools of gesture studies, cognitive linguistics, and embodied cogni-
tion to examine the spontaneous co-speech gestures of doctoral students
as a means of better understanding their thinking about a proof-in-prog-
ress (see also Edwards, 2010). In contrast to many studies of gesture and
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mathematics, this setting was not pedagogical. Instead, the participants in
this study were asked to do something that they had done many times be-
fore—create a valid proof—but because the conjecture was new to them,
this task nevertheless represented an intellectual challenge and offered a
context for sophisticated mathematical discourse. This approach offers an
opportunity to examine proving as a central practice of mathematicians.
The participants’ gestures thus accompanied authentic mathematical prac-
tice and have the potential to reveal textured aspects of the participants’
mathematical thought.

A CASE STUDY OF EXPERT PROOF

When mathematicians work on a proof, they talk, scribble, on blackboards
and in notebooks; stare pensively into empty space; and, crucially, gesture
even when working alone. These co-thought and co-speech gestures might
be mere “handwaving,” empty accompaniments to “core” processes of logi-
cal inference. As we have seen, however, there is mounting evidence that
gestures are central to, and revealing of, abstract thought more generally.
Might expert mathematical discourse reveal a relationship between gesture
form and the inferential structure of the mathematical argument?

To answer this question, we went to a natural site of mathematical prov-
ing: the academic office. We arranged for twelve doctoral mathematics
students from a large American research university to collaborate on a
non-trivial proof, working in pairs at a blackboard. They had been enrolled
in the graduate program for various lengths of time, from ten months to
three years, and were working in a variety of subfields within mathematics.
During a 90-minute session, the participants were first interviewed about
their mathematical specializations, as well as their approaches to learning
and teaching proof. After the interview, the pairs of students were asked to
prove the conjecture below, provided to them on a sheet of paper:

Let fbe a strictly increasing function from [0, 1] to [0, 1].
Prove that there exists a number «a in the interval [0, 1]
such that f(a) = a.

This problem was selected, in part, because the mathematician who
proposed it reported that when proving the theorem, he experienced a
palpable sense of motion. We also checked with faculty at the university
to determine that the theorem was not presented in any of the graduate
analysis courses, and thus was likely to be new to the students. Although
the problem comes from real analysis, it does not require specialized or ad-
vanced knowledge within that subdiscipline. The proving of this theorem,
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therefore, presented an excellent opportunity to challenge and examine
the mathematical thinking of the participants.

Participants were given up to 40 minutes to solve the problem, working
in a room with a blackboard, on which they were asked to record their
work. The entire session was videotaped, but the investigator (the second
author) was not present while the students worked on the proof. Once the
pair was satisfied with the proof, or the 40 minutes had passed, the inves-
tigator returned to the room, and the participants were asked to explain
their proof or their progress to that point.

Here we focus on an analysis by Marghetis and Nufez (2013) of the
mathematical speech and gestures from these video-recorded sessions. The
analysis concentrated on gestures used to represent mathematical content,
that is, gestures that were co-produced with talk of particular mathemati-
cal concepts. Specifically, Marghetis and Nufez examined representational
gestures produced in conjunction with two categories of conceptual con-
tent: static and dynamic mathematical ideas.

By static ideas, we mean those mathematical concepts that are hypothe-
sized to rely on static spatial schemas such as containment—ideas like math-
ematical sets, which can be conceptualized metaphorically as containers
for their elements. By contrast, dynamic ideas are mathematical concepts
that are thought to rely for their conceptualization on intuitions of space
and motion. This distinction between static and dynamic ideas grew out
of work by Talmy (2000), who noted that language typically used to ex-
press motion is often used in the absence of literal motion, a phenomenon
known as fictive motion. For instance, we say that “the road runs through
the hills of Tuscany,” even though roads are static and thus incapable of
literally running anywhere. Lakoff and Nufez (2000) noted that a similar
phenomenon exists for technical mathematical concepts—including the
notions of functions, continuity, and limit—where the technical definitions
are entirely static and yet mathematicians reliably talk about such concepts
using dynamic language.

For illustration, consider the concept of a limit, a central notion in calcu-
lus. Technically, the limit of a function is defined by a chain of inequalities:

Leta function fbe defined on an open interval containing a,
except possibly at aitself, and let L be a real number.
Then lim(x— @) f(x) = L means that, for all € > 0, there exists 6 > 0,
such that whenever 0 < |x— a| < §, then |f(x) - L] <&.

Note that the limit notation includes a small arrow, which might suggest
that the definition of a limit of a function would include some notion of
dynamism. The technical definition of a limit, however, refers only to static
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universal and existential quantifiers, static numbers, motionless arithmetic
differences, and static inequalities. Nowhere in this definition is there any
mention of movement. Mathematicians, in contrast, speak of a function
“tending to,” “moving toward,” or “reaching” a limit—all of which, unlike
the formal definition, invoke a sense of motion (Nunez, 2006). These ex-
pressions are all instances of fictive motion, invoking a trajector (moving
actor) in motion across a landscape (non-moving background)—despite
the fact that there is no literal motion involved. Similar instances of fictive
motion inject dynamism into a wide range of statically defined mathemati-
cal entities. A function, for example, is formally defined as a static relation
between two sets, the domain and the range, but mathematicians neverthe-
less routinely describe functions dynamically as “reaching an asymptote,”
“going down towards a minimum,” or “oscillating,” in each case evoking a
construal in which an imaginary trajector travels along the path of the func-
tion (Nunez, 2006). Fictive motion is similarly at work when we say that
sequences are “approaching,” “decreasing,” or “converging,” and when
arithmetic is construed as motion along a number line. Specific forms of dy-
namism, therefore, are present throughout the language of mathematics,
showing up in the discourse surrounding continuity, functions, and even
arithmetic, which lends credence to the claim that mathematical thought
builds on dynamic, metaphorical, and embodied construals.

While previous analyses have argued that these ideas rely in varying ways
on spatial intuitions like motion or containment (Lakoff & Nunez, 2000),
this remained largely speculative: There was no empirical evidence that
dynamic, spatial intuitions played a role in real-time, expert practice. Lan-
guage, after all, can mislead, and the archaeology of language is a fraught
enterprise: “fasting,” for instance, has nothing to do with speed or mo-
tion. It’s entirely possible that the rampant fictive motion in conventional
mathematical language is similarly misleading, suggesting dynamism where
there is none. As we have pointed out, however, mathematical discourse is
not limited to speech but also involves gesture. Can gestures, meaningful
movements of the body, provide additional evidence for dynamism in math-
ematical thought?

EVIDENCE FOR FICTIVE MOTION IN GESTURE

To zoom in on this mathematical content of interest, Marghetis and Nuiiez
(2013) generated a list of lexical items thought to be associated with fictive
motion or dynamic conceptual metaphors, drawing on previous theoreti-
cal work within cognitive linguistics (Talmy, 2000). These included math-
ematical terms (e.g., function, continuity, limit, contain), verbs of motion
(e.g., to cross, to move, to jump), and spatial terms (e.g., up, between, left).
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Mathematical terms referring to static concepts (e.g., set, point) were also
identified. Of course, many everyday concepts are open to multiple constru-
als, and technical mathematical concepts are no different. The notion of
continuity, for instance, can be construed dynamically as movement without
jumps—but also as “Preservation of Closeness,” a static construal (Nuiiez,
Edwards, & Matos, 1999; Nunez & Lakoft, 1998). As we shall see, this was
reflected in participants’ embodied discourse, where a single expression was
produced on multiple occasions with gestures that varied in dynamicity.

Gestures co-produced with these targeted lexical items were then classified
as dynamic, static, or ambiguous.? Because gestures are co-speech motor ac-
tions, they necessarily involve dynamic movement. To differentiate between
gestures for which dynamism was an artifact of gesture production, and those
gestures for which dynamism was truly expressive of mathematical thinking,
we devised a coding scheme that attended to details of the motion and tim-
ing of the co-speech gesture. A gesture was coded as: (a) dynamic if it used
smooth, unbroken motions; (b) static if it consisted of staccato strokes and
segmented motions, or of a smooth motion bookended by staccato gestures;
and (c) ambiguous if it did not fit into either of these categories.

The graduate students in our study were highly skilled, and thus it was
no surprise that every dyad arrived at a reasonable solution that includ-
ed most of the elements of a complete proof. Half of the dyads even fin-
ished early, before the end of the allotted time. In all cases, participants’
proofs followed the same outline as the proof supplied by the mathemati-
cian who proposed the problem. All six dyads made extensive use of dia-
grams—oprimarily graphs of “generic” increasing functions, or sections of
functions—in combination with extensive symbolic inscriptions. However,
the sequence in which the various modalities were used, including speech,
symbolic and graphical inscriptions, gesture and gaze, varied a great deal
within and among the pairs of participants. Some participants spent several
minutes looking at the paper on which the conjecture was printed or star-
ing into space, others immediately sketched a graph on the blackboard,
while several initially discussed what they knew or could immediately con-
clude about the conjecture (see Edwards & Harel, 2009). These discussions
were always accompanied by gestures, some of which were used pragmati-
cally to manage the interaction (turn-taking, emphasis, etc.) while others
occurred in conjunction with the use of content-rich mathematical speech.

Examples of Co-speech Representational Gestures
As noted, gestures used to represent the conceptual content of the

mathematical discourse were the focus of our analysis. To give a flavor of
the range of these representational gestures, below are several examples



236 = T. MARGHETIS, L. D. EDWARDS, and R. NUNEZ

of dynamic and static representational gestures co-produced with similarly
coded lexical items.

Dynamic Gestures

The technical concept of “increase” offers an example of a mathemati-
cal construct that seemed to demand an exclusively dynamic treatment in
gesture. Participants produced fourteen representational gestures that co-
occurred with the lexical items “increasing” or “increase.” All of the co-
produced gestures were dynamic.

In Figure 10.1, the participant is saying “increasing sequences” and while
doing so produces a smooth, unbroken motion, co-timed with his speech.
At the onset of the word increasing, he begins to fluidly move his left hand
upward and toward the right, with his thumb pointing in the direction of
motion (Figure 10.1A). As he reaches the end of the word, the motion of his
left hand slows slightly while his right hand begins to accelerate, once again
moving upward and to the right in the direction of his extended thumb.
As he begins to say “sequence,” his right hand reaches its top speed (Fig-
ure 10.1B). Both hands begin to slow to a stop (Figure 10.1C), and their
retraction is co-timed with the end of the word “sequences.” Neither his gaze
nor his thumbs are directed toward the blackboard or any inscription on it;
rather, the deictic aspect of the gesture is used to indicate the direction that
the graph of any increasing function would take (up and to the right).

In Figure 10.2, the student is at the blackboard writing a series of in-
equalities that contradict the assumption that the function is increasing. As
he finishes writing, he steps back from the blackboard, drops his hands to
his side, and states, “So that contradicts uhhh increasing” (Figure 10.2A).
Precisely co-timed with the onset of the word increasing, his right hand flies
upward and to the right, with his index finger extended in a prototypical
pointing hand shape (Figure 10.2B). As he finishes saying “increasing,” his
right hand slows, pointing to the right of the blackboard for a moment

Figure 10.1 Dynamic deictic gesture while saying “increasing sequence.” Both
hands evoke the sequence’s fictive motion.
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Figure 10.2 Dynamic gesture while saying “increasing.” A fluid rightward hand
movement is co-timed with speech.

(Figure 10.2C), before smoothly dropping to his side. This is a quintes-
sential example of dynamic co-speech gesture, consisting of a continuous
motion co-timed with a dynamic lexical item.

Static Gestures

Static gestures often accompanied discussions of closeness and contain-
ment. In Figure 10.3, the student is discussing the values of a function and
wants to consider only those values contained within a restricted region.
At first, all her gestures are deictic, anchoring her discussion to the graph

Figure 10.3 A static gesture co-timed with the utterance, “sort of, small enough.”
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she has drawn on the blackboard. She introduces the region of interest by
saying, “Well, if you look at a, sort of, small enough, sort of....” When she
begins to describe the region of interest (“Well...”), she retracts her hands
from the blackboard and positions them in front of her chest, pointing to-
ward each other, and pauses as she says, “sort of” (Figure 10.3A). Co-timed
with the onset of the word small, she quickly moves her hands toward each
other, stopping when they are 10 cm apart, and then quickly retracting
her hands to their original distance (Figure 10.3A-C). Co-timed with the
word enough, she repeats the same inward staccato stroke, stopping abruptly
when her hands are at the same distance and retracting once again (Fig-
ure 10.3D-E). By indexing two particular points in space with a repeated
beat, she evokes the endpoints of a delimited region containing the func-
tion’s domain. This gesture was thus coded as static because it consists of
distinct beats, indexing exact points in space.

Variable Gesture for the Same Utterance

Often a single utterance was amenable to different kinds of represen-
tation in gesture. The utterance “to the left,” for instance, received both
dynamic and static treatments in gesture (Figure 10.4).

In the second frame of Figure 10.4 (labeled B), the participant is pro-
ducing a static gesture co-timed with the utterance “to the left.” One par-
ticipant suggests to his collaborator that they should look for “implicit
continuity to the left of what we’re talking about.” As he says “to the left,”
he forms his thumb and forefinger into a U-shape, with the two digits rep-
resenting the boundaries of a specific interval, performs one forward beat
with this hand shape, and then holds his hand still for nearly a full second.
This gestural representation of “to the left” captures the static notion of
containment within a fixed region to the left of a reference point.

Figure 10.4 Two gestures co-produced with the utterance “to the left.” While the
gesture on the left is dynamic, the one on the right is static.
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The first frame of Figure 10.4 (labeled A) shows the same lexical affiliate
(“to the left”) co-timed with a dynamic gesture. While discussing the inter-
section of a function and the line y = x, a participant asks whether the func-
tion was “going a little bit to the left.” As he begins to say “to the left,” he
points his forefinger to the left and fluidly moves his hand in that direction,
retracting his hand as he says “left.” In contrast to the example of a fixed
(static) region to the left, above, this gesture represents a dynamic sense of
the fictive motion of the function as it “moves” in a particular direction.

These two cases illustrate that gestures may share a lexical affiliate but
differ in their dynamism. Although highly synchronous with the utterance
“to the left,” these two gestures exhibit different kinetics and hand shapes.

VARIETIES OF METAPHORICAL GESTURES
IN MATHEMATICS

Kendon’s (2004) distinctions among types of gestures can help us under-
stand the various ways in which participants used gesture to represent math-
ematical concepts. As noted above, during enactment the gesture enacts or
reproduces some aspect of a physical action. The enactments produced by
all of the participants were directly coupled to the environment, for exam-
ple, re-tracing the path of a graph while holding the chalk barely off the
blackboard. Because our focus was on gestures that were not deictic, and
these enactments involved coupling gesture with a preexisting blackboard
inscription, no enactments were coded in this study. In depiction, the ges-
turer uses the index finger or some other physical element to outline or
“draw” the shape of an object in the air. In the current setting, such “objects”
consisted of mathematical entities, given a spatial representation in virtue
of their definition, standard graphical inscription, or spatial conceptualiza-
tion. For example, in Figure 10.3, the participant uses a sequence of staccato
beat gestures to delimit a region in space, thus depicting this mathematical
“object.” Similarly, the second frame of Figure 10.4 shows a U-shaped ges-
ture bounding a region “to the left.” It should be noted that these gestural
depictions of numerical intervals depend on a preestablished conceptual
mapping between number and space, so that a “region” can be interpreted
as a bounded portion of the real number line. This conceptual mapping is
introduced early within mathematics teaching through representations such
as the number line, in which numbers that are “less than” a reference num-
ber are conventionally taught as lying to the left of the reference number
(Dehaene, Bossini, & Giraux, 1993; Edwards, 2009; Lakoff & Nunez, 2000;
Nunez, 2011; Nanez & Marghetis, in press). Similarly, in the two examples of
gestures co-produced with the lexical affiliate increasing, both participants
exhibited a marked rightward hand trajectory, mirroring the contingent fact



240 = T. MARGHETIS, L. D. EDWARDS, and R. NUNEZ

that, historically, graphs of functions have been drawn from left to right. In
general, the process of associating number and space can be accounted for
by the cognitive mechanisms of conceptual blending and metaphor (Nuiiez,
2011), and a similar conceptual association between number and space has
been shown in the context of arithmetic reasoning (Knops, Thirion, Hub-
bard, Michel, & Dehaene, 2009; McCrink, Dehaene, & Dehaene-LLambertz,
2007; Nafiez & Marghetis, in press; Pinhas & Fischer, 2008).

In Kendon’s category of modeling, the gesturing body part stands in for
an object. Both specimens of dynamic gesture shown in Figures 10.1 and
10.2 involve the modeling of a mathematical concept via a fictive trajector.
In this case, the trajectory is the increase of the mathematical sequence un-
der discussion, and fictive motion involves the motion of an imagined tra-
jector along this trajectory. In Figure 10.1, the moving hands model the dy-
namic increase of the sequence, with the hands standing in for the fictively
moving trajector. In Figure 10.2, the hand models the trajector that travels
along the path of a function, passing through the function’s increasing val-
ues. Note that the modeling of a trajector moving along the path of a graph
is a different representation than enacting the action of drawing the graph
in the first place; in modeling, the gesture stands in for a (fictive) moving
trajector, whereas in enactment, the gesture reproduces, in part, the action
of drawing the graph. For both these examples, extended fingers indicate
the direction of the trajectory, constituting a kind of vector representation
of the trajector’s fictive motion—quite unlike any hand shape that might
have been used to hold the chalk while tracing a graph on the blackboard.

Kendon’s analysis of precisely how a gesture relates to its referent is thus
helpful in characterizing how gestures that co-occur with mathematical
speech can represent mathematical ideas in different ways. To examine
whether this use of gesture to represent mathematical ideas was truly sys-
tematic and reliable, we next looked quantitatively at the co-occurrence of
dynamic and static gestures with lexical items associated with dynamic and
static concepts.

DYNAMIC CONCEPTS, DYNAMIC GESTURES

The participants produced a large number of gestures, the majority of
which were deictic or “pointing” gestures, anchored to inscriptions on the
blackboard. Deictic gestures appeared to play a number of roles, including
maintaining attention during particularly complex deductions and direct-
ing the attention of a collaborator to a salient inscription. While others have
studied the significance of deictic gestures for mathematical communica-
tion and learning (e.g., Alibali et al., 1999; Goldin-Meadow & Wagner, 2005;
Goldin-Meadow et al., 2009), here we focus on participants’ representational
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gestures. Every participant but one produced representational gestures that
were co-timed with the dynamic and static lexical items of interest. A total of
166 of these co-timed representational gestures were coded, for a mean of
13.8 coded gestures per participant. Of these, the majority of the gestures
were coded as dynamic (50.6%); fewer were coded as static (41.6%).

In line with the hypothesis that gesture can express the metaphorical
and/or spatial content of abstract mathematical ideas, gesture dynamicity
varied according to the co-occurring concept expressed in mathematical
speech (Marghetis & Nufez, in press). Certain concepts were associated
with a prevalence of dynamic or static gestures. For example, as shown in
Figure 10.5, gestures co-produced with talk of “increase,” “continuity,” and
“intersection” were more often dynamic; those co-produced with talk of
“containment” and “closeness” were more often static.

To test the robustness of this association between the dynamicity of math-
ematical concept and the dynamicity of gesture, we examined those partici-
pants who produced gestures that co-occurred with these concepts and cal-
culated the proportion of gestures that were dynamic. We focused on specific
mathematical concepts that, based on previous theoretical analyses, were
thought to have a construal that was primarily dynamic or primarily static: the
dynamic notion of increase—thought to evoke fictive motion—and the static
notions of closeness and containment (Lakoff & Nunez, 2000). A between-
subjects analysis of variance found that gestures produced while speaking of
“increase” were significantly more often dynamic than static [F(1,10) = 28.90,
p=.0003], while participants produced a significantly higher proportion of
static gestures while discussing “containment” [(/(1,12) =6.75, p=.0232]
and “closeness” [F(1,10) = 76.73, p<.0001].
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Figure 10.5 Proportion of dynamic and static gestures by co-occurring concept.
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Among these expert practitioners, therefore, dynamicity in gesture was
reliably associated with mathematical concepts thought to rely on dynamic
conceptualization, thus lending credence to the hypothesis that even ex-
pert mathematical practice relies on intuitions of motion—a dynamic com-
plement to the static definitions.

DISCUSSION

This empirical study of mathematical practice supports the claim that ges-
ture is an integral component in the production and communication of
mathematical meanings during expert proof, and furthermore that gestur-
al meaning-making makes systematic use of dynamicity. Both dynamic and
static representational gestures were widespread and recurrent in collabor-
ative mathematical practice among doctoral students. Lexical items linked
to mathematical concepts associated with dynamism or fictive motion were
systematically paired with dynamic gestures, whereas terms associated with
static concepts such as containment were systematically paired with static
gestures. In summary, dynamic metaphorical gestures are not restricted to
pedagogical or elementary mathematical contexts but are also clearly pres-
ent in expert mathematical practice.

Because the construction of mathematical diagrams is necessarily a dy-
namic process, typically involving the tracing of chalk across a blackboard,
one might wonder whether the dynamism of gesture in a context involving
graphing is a mere echo of the dynamism of the inscriptive motion. Cer-
tainly, the motion that inevitably accompanies the creation of a mathemati-
cal diagram by hand is probably a factor in the historical and developmen-
tal origin of fictive motion for such notions as continuity, function, and
limit. The contemporary dynamism of mathematical thought, however, is
incredibly robust. Mathematical discourse is rife with fictive motion in the
absence of diagrams altogether, as demonstrated by corpus studies of text-
books (Nuiiez et al., 1999; Nunez & Lakoff, 1998). As an example from the
study analyzed here, in Figure 10.2, the participant produced a dynamic
gesture not after creating a graphical inscription but after writing a series
of static inequalities. The dynamism of his gesture reveals the dynamism of
his understanding of increasing sequences. While a graph of a function is
visible in Figure 10.1, the participants had not recently attended to the dia-
gram; instead, they were discussing the limit of a function and representing
it symbolically using set notation. Moreover, the participant’s gesture moves
orthogonally to the orientation of the blackboard diagram. The dynamism
evinced in gesture is not merely an echo of inscriptive actions, therefore,
but evidence for the dynamism inherent in the participants’ understanding
of the mathematics.



More Than Mere Handwaving = 243

Attention to gesture, and to the body-in-interaction more generally, has
opened up new vistas for further research on proof. In the current analysis,
environmentally coupled deictic gestures were purposefully disregarded,
as when participants pointed at inscriptions on the blackboard. Did this
choice ignore an essential component of mathematical gestural behavior?
Pointing at the graph of a function, for instance, was not coded, even if
the hand dynamically swept along the curve of the graph. This aspect of
the coding scheme represented a conscious decision to sacrifice breadth of
analysis for experimental traction and focus. The coding scheme successful-
ly discriminated between mathematical gestures that expressed mathemati-
cal content (e.g., “The function is increasing”) and meta-mathematical ges-
tures that conveyed something about the local practice and environment
(e.g., “Let’s move the diagram a bit higher on the blackboard”). While de-
ictic gestures are undeniably an important part of mathematical practice,
particularly when that practice involves collaboration or explanation at a
blackboard (see Goldin-Meadow et al., 2009), the analysis of such environ-
mentally coupled gestures requires care because their interpretation may
require attention to the inscription, to the mathematical entity represented
by that inscription, or to both (Edwards, 2009; Hutchins & Palen, 1998). By
restricting our attention to representational gestures, the analysis avoided
this complication. Future research will explore the ways in which environ-
mentally coupled gestures elaborate meaning and direct local practices.

In attending exclusively to formal, disembodied theorems and proofs—
products of the sedimentation of local mathematical practices—the study
of mathematical thinking has ignored the rich meaning-making practices
of flesh-and-blood mathematicians and collapsed multi-agent and multi-
modal practice into a single idealized agent working within a single writ-
ten modality. In order to account for the exceptional traits of mathemat-
ics—objectivity, necessity, precision, stability—we must remember that, “Of
course, in one sense, mathematics is a body of knowledge, but still it is also
an activity” (Wittgenstein, 2009, para. 349).

In this chapter, we have faced off against the received wisdom about
mathematics: that it is largely ahistorical, existing independently of human
activity; that the real mathematics is the product of mathematical prac-
tice—text-based proofs, lemmas, and theorems—while the messy, fleshy ac-
tivity of actually doing mathematical proof is secondary. Research that takes
gesture and other bodily modalities into account is a direct response to this
ahistorical tradition and a contribution to an emergent study of mathemat-
ics that does justice to actual mathematicians and mathematical activity
(e.g., Mancosu, 2008). Without a doubt, expert mathematics is marked by
rigorous methods, formal definitions, and symbol manipulation, but math-
ematical practice—and mathematical proof in particular—requires the mo-
bilization of far more than these abstract resources. Contemporary expert
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proof, for instance, is a richly embodied practice that involves inscribing
and manipulating notations, interacting with those notations through
speech and gesture, and using the body to enact the meanings of mathe-
matical ideas (Goldstone, Landy, & Son, 2010). By including gesture in the
analysis, we take the mathematician’s body seriously as a semiotic resource
in the creation and communication of mathematical content. Seen in this
light, mathematical proof is no longer an abstract product but is instead a
dynamic practice, a human activity that involves talking, inscribing, and,
crucially, gesturing: Mathematics is manual labor.

NOTES

1. This research was supported by Spencer Foundation Grant no. 200700151 to
Laurie Edwards, Guershon Harel, and Rafael Nunez.

2. Because the goal of the study was to document the deployment of space to
represent mathematical content, we excluded interactive gestures—used to
manage the communication between the participants.
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